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Abstract—A supervised classification method for time series, even
multivariable, is proposed. It is based on boosting very simple clas-
sifiers. They are formed only by one literal. The used predicates,
such as “always” and “sometime” operate over temporal intervals
and regions in the dominion of the values of the variable. These
regions are obtained previously, using discretization techniques.
The experimental validation of the method has been done using
different data sets, some of them obtained from the UCI reposito-
ries. The results are very competitive with the obtained in previous
works. Moreover, their comprehensibility is better than in other
approaches with similar results, since the classifiers are formed by
a weighted sequence of literals.
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I. INTRODUCTION

Multivariate time series classification is useful in do-
mains such as biomedical signals [1], continuous
systems diagnosis [2] and data mining in temporal
databases [3]. This problem can be tackled extract-
ing features of the series, through some kind of prepro-
cessing, and using some conventional machine learning
method. Nevertheless, this approach has several draw-
backs, these techniques are usually ad hoc and domain
specific [4]. The design of specific machine learning
methods for the induction of time series classifiers al-
lows the construction of more comprehensible classifiers
in a more efficient way.
We propose a simple, although effective, technique for
time series classification based on literals over temporal
intervals (e.g., always( Variable, Region, Beginning, End ))
and boosting (a method for the generation of ensembles
of classifiers) [5].
The rest of the paper is organised as follows. The base
classifiers are described in section II. Boosting these
classifiers is explained in section III. Section IV presents
the experimental validation. Finally, section V con-
cludes.

II. BASE CLASSIFIERS

A. Temporal Predicates

The selection and definition of the temporal predicates
is based in the ones used in a visual rule language for
dynamic systems [2] and it is introduced in [6]. The
temporal predicates used are the following:

� always( Variable, Region, Beginning, End ). It is true if
the Variable is always in this Region in the interval
between Beginning and End.� sometime( Variable, Region, Beginning, End ). It is true
if the Variable is sometime in this Region in the inter-
val between Beginning and End.
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� true precentage( Variable, Region, Beginning, End, Per-

centage ). It is true if the percentage of the time
between Beginning and End where the variable is in
Region is greater or equal than Percentage.

Once that it is decided to work with temporal intervals,
the use and definition of the predicates always and some-

time is natural, due to the fact that they are the extension
of the conjunction and disjunction to intervals. Since
one appears too demanding and the other too flexible,
a third one has been introduced, true precentage. It is a
“relaxed always” (or a “restricted sometime”). The ad-
ditional parameter indicates the degree of flexibility (or
restriction).

A.1 Regions.

The regions that appear in the previous predicates are in-
tervals in the domain of values of the variable. In some
cases the definitions of these regions can be obtained
from an expert, as background knowledge. Otherwise,
they can be obtained with a discretization preprocess,
which obtains � disjoint, consecutive intervals. The re-
gions considered are these � intervals (equality tests) and
others formed by the union of the intervals

���������
(less

or equal tests).
The reasons for fixing the regions before the classifier
induction, instead of obtaining them while inducing, are
efficiency and comprehensibility. The literals are easier
to understand if the regions are few, fixed and not over-
lapped.

B. Searching Literals

Given a set of positive and negative examples, the best
literal, according to some criterion, must be selected.
Then, it is necessary to search over the space of literals.
The possible number of intervals, if each series has 	
points, is 
�	����	����� . If � is the number of predi-
cates considered, and � the total number of regions in
the different variables, the possible number of atoms is
����
�	�����	����� , and the possible number of literals (atoms
possibly negated) is ����
�	����	� . In the case of pred-
icates with additional arguments (true precentage), it is
also necessary to consider how many values are possible
for them.

B.1 Linear Probing.

The process starts with windows of size 1 (between two
consecutive points) and the windows of size

�! "�
are

evaluated from the windows of size
�

with the same ori-
gin. The initialisation of the windows of size 1, for each
predicate, it is done in #$
&%'� , where % is the total number
of examples. The amplification of the size of the win-
dow in one unit is also done in #$
�%(� . It is necessary to
calculate the number of positive and negative examples
covered. In the most complex case, true precentage, this



requires a time of #$
&%  � � , where
�

is the number of
values allowed in the additional argument of this predi-
cate. Summarising, the worst execution time for finding
the best literal is #$
 
�%  � ����� 	���� . If %�� � (the most
common case) or true precentage is not used, then it is
#$
&%���� 	�� � .
B.2 Exponential Probing.

With the objective of reducing the search space, an-
other alternative is considered. In this case not all the
windows are probed. Only those that are power of �
are considered. The number of these windows is of������
	 
�	 � � ���	 ����� 	�� � � � �

where ���������!	�� . Us-
ing a dynamic programming algorithm it is possible to
obtain the information necessary of the window of size
� � from two consecutive windows of size

�
, with a time

of #$
�%(� (in the case of true precentage, #$
&%  � � ). The
selection of the best literal in this case requires a time of
#$
&%���� 	����!	� .

III. BOOSTING

Nowadays, an active research topic is the use of ensem-
bles of classifiers. They are obtained by generating and
combining base classifiers, constructed using other ma-
chine learning methods, typically decision trees. The
target of these ensembles is to increase the accuracy with
respect to the base classifiers.
One of the most popular methods for creating ensembles
is boosting [5], a family of methods, of which AdaBoost
is the most prominent member. They work assigning
a weight to each example. Initially, all the examples
have the same weight. In each iteration a base classifier
is constructed, according to the distribution of weights.
Afterwards, the weights are readjusted according to the
result of the example in the base classifier. The final
result is obtained combining the weighted votes of the
base classifiers.
Following the good results of works using ensembles of
very simple classifiers [7], sometimes named stumps, in
our case the base classifiers are formed by only one lit-
eral. Table I shows one of this classifier. The reasons for
using so simple base classifiers are:

� Ease of implementation. In fact, it is simpler to im-
plement a boosting algorithm than a decision tree
or rule inducer. A first approximation to the induc-
tion of rules with these literals is described in [6].� Comprehensibility. It is easier to understand a
sequence of weighted literals than a sequence of
weighted decision trees or rules.

The criterion used for selecting the best literal is to select
the one with less error, relative to the weights, although
preferring the literals with bigger intervals.

A. Multiclass problems

The simplest AdaBoost algorithm is defined for binary
classifications problems [5], although there are exten-
sions for multiclass problems [8]. In our case the base
classifiers are also binary (only one literal) and it ex-
cludes some techniques for handling multiclass prob-

TABLE II

CHARACTERISTICS OF THE DATA SETS

Data set Classes Examples Points
CBF 3 798 128
Control charts 6 600 60
Waveform 3 900 21
Wave + noise 3 900 40

lems. We have used a simple approximation: the prob-
lem is reduced to several binary classification problems,
as many as classes, which decides if an example is, or is
not, of the corresponding class. Every binary problem is
solved independently using boosting.
The advantages of using boosting for binary problems
are that it is always possible to find a literal with an er-
ror less than � � � , necessary for the boosting algorithm,
since the problem is binary, and that the results are more
comprehensible because they are organised by classes.
To classify a new example, it is evaluated by all the bi-
nary classifiers. If only one of them classifies it as pos-
itive, then the example is assigned to the corresponding
class. If the situation is not so idyllic, we can consider
that the multiclass classifier is not able to handle this ex-
ample. This is a very pessimistic attitude. In the experi-
ments, the classification error obtained with this point of
view is named maximum error.
When using boosting in a binary problem, the result is
positive or negative depending of the sign of the sum
of the results of the individual classifiers, conveniently
weighted. In a multiclass problem, if we have conflicts
between several of the binary classifiers we use these
sums of weights, normalised to � � �����! , to select the
winner. In the experiments, the error obtained with this
method is called combined error.

IV. EXPERIMENTAL VALIDATION

A. Data sets

The characteristics of the data sets are summarised in ta-
ble II. The main criterion for selecting them was that the
number of examples available were big enough, to en-
sure that the results were reliable. Figure 1 shows some
examples.

A.1 Cylinder, Bell and Funnel (CBF).

This is an artificial problem, introduced by Saito [9].
The learning task is to distinguish between these three
classes: cylinder ( " ), bell ( # ) or funnel (

�
). Examples

are generated using the following functions:

"�
%$ �&� 
�'  )( �+*-,�. /10 2�3 
�$ �  54 
�$ �
#(
�$ �6� 
�'  )( �+*-,�. /10 2�3 
�$ �+* 
%$ �87 � � 
9# �:7 �  ;4 
%$ �� 
�$ �6� 
�'  )( �+*-,�. /10 2�3 
�$ �+* 
<# �:$ � � 
<# �87 �  ;4 
%$ �

where

,�. /=0 2%3>� ? � if $A@B7DCE$F�G#�
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(a) CBF
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(b) Control Charts
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(c) Waveform
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Fig. 1. Some examples of the data sets. Two examples of the same class are shown in each graph.



TABLE I

EXAMPLE OF CLASSIFIER. IT CORRESPONDS TO THE CLASS CYLINDER OF THE CBF DATA SET. IT SHOWS THE LITERAL, THE NUMBER AND

TOTAL WEIGHT OF THE COVERED EXAMPLES AND THE ERROR AND WEIGHT OF THE INDIVIDUAL CLASSIFIER. THE NUMBER OF POSITIVE AND

NEGATIVE EXAMPLES IN THE TRAINING SET ARE 213 AND 426, RESPECTIVELY.

literal examples weights literal� � � �
error weight

not true precentage( x, 1 4, 20, 84, 50 ) 192 18 0.30 0.03 0.06 1.37
not true precentage( x, 3, 37, 101, 15 ) 194 53 0.34 0.06 0.14 0.89
true precentage( x, 5, 17, 33, 15 ) 135 134 0.45 0.09 0.14 0.91
not true precentage( x, 4, 23, 87, 15 ) 170 10 0.28 0.01 0.17 0.78
not true precentage( x, 3, 26, 90, 15 ) 207 46 0.56 0.09 0.17 0.79
not true precentage( x, 4, 72, 74, 5 ) 194 225 0.55 0.15 0.18 0.77
true precentage( x, 4, 20, 24, 30 ) 15 10 0.22 0.01 0.21 0.67
not true precentage( x, 1 4, 45, 53, 85 ) 213 170 0.62 0.19 0.19 0.72
not true precentage( x, 3, 24, 88, 5 ) 159 0 0.15 0.00 0.24 0.58
true precentage( x, 5, 4, 36, 5 ) 178 190 0.57 0.19 0.22 0.63

and
(

and
4 
%$ � are obtained from a standard normal dis-

tribution � 
�� ��� � , 7 is an integer obtained from a uni-
form distribution in � � ' ��� �  and # �87 is another integer
obtained from another uniform distribution in � � � ��� '  .
The examples are generated evaluating those functions
in

��� � ����� � ��� . For ease of comparison with previous
results, ��'�' examples of each class were generated. Fig-
ure 1.a shows some examples of this data set.

A.2 Control Charts.

In this data set there are six different classes of control
charts, synthetically generated by the process in [10].
Each time series is of length 	 , and is defined by 	 
%$ � ,
with

� H;$ H 	 :

1. Normal: 	 
%$ � ��
  �� . Where 
 � � � , � � �
and � is a random number in � � � ���  

.
2. Cyclic: 	 
%$ � ��
  ���  7�������
 ���$ ��� � . 7 and �

are in � � � ���1�= .
3. Increasing: 	 
%$ ����
  ���  �� $ . �

is in � � � � � � � �= .
4. Decreasing: 	 
�$ � ��
  �� � � $ .
5. Upward: 	 
%$ ����
  ���  � � . � is in ��� � � � ���  and� � � before time $ � and 1 after this time. $ � is in� 	 � � � ��	 � �  .
6. Downward: 	 
%$ ����
  ��� �)� � .

The data used was obtained from the UCI KDD
Archive [11]. It contains

� ��� examples of each class,
with ' � points in each example. Figure 1.b shows some
examples of this data set.

A.3 Waveform.

This data set was introduced by [12]. The purpouse is to
distinguish between three classes, defined by the evalu-
ation in

� � � ����� � � , of the following functions:
� 	 
 � � � ��� 	 
 � �  
 � ��� � � � 


� �  ;4 
 � �
� � 


� � � ��� 	 
 � �  
 � ��� � � � 
 � �  ;4 
 � �
��� 
 � � � ��� � 


� �  
 � ��� � � � 
 � �  ;4 
 � �
where � 	 
 � �F�"!$#�%�
�' �'& � �(�)& � � � , � � 


� �A�*� 	 
 � ��� � ,
� � 
 � � �+� 	 
 � �-, � , � is a uniform aleatory variable in

<� ��� � and

4 
�$ � follows a standard normal distribution.

We use the version from the UCI ML Repository [13].
Figure 1.c shows some examples of this data set.

A.4 Wave + Noise.

This data set is generated in the same way than the pre-
vious one, but

�.�
points are added at the end of each

example, with mean � and variance
�
. Again, we used

the first
� � � examples of each class of the corresponding

data set from the UCI ML Repository.

B. Results

The results for each data set were obtained using five
five-fold stratified cross-validation. The number of re-
gions for each variable was ' . Only, the predicate
true precentage was used. The allowed values for the
parameter percentage where

� ���=� ��� � � � � � � � � � � and
� �

.
Boosting was applied with

� � iterations. Table III and
figure 2 resume the results.
Globally, we can highlight the good evolution of the
maximum error for each data set with the number of it-
erations in the boosting process. For all of the data sets,
the best results appear in the last iteration, and the evo-
lution is, nearly always, decreasing. For the combined
error, the evolution is not so good. The last iteration is
the best result only in one case (CBF), and in this case
this result appears also in a previous iteration.

B.1 Cylinder, bell and funnel.

The best result, to our knowledge, previously published,
with this data set is an error of

� � �
[4], using

� � fold
cross validation. From the iteration

� � , the results shown
in table III are better than this result.

B.2 Control charts.

The best result is obtained in the iteration
� � , with an

error of � � �/� . From the iteration � � , all the values are
less or equal than

� � � � . The only results we know with
this data set are for similarity queries [10], and not for
supervised classification.



TABLE III

EXPERIMENTAL RESULTS. FOR EACH DATA SET, THE FIRST COLUMN SHOWS, IN PERCENTAGE, THE MAXIMUM ERROR AND THE SECOND ONE

THE COMBINED ERROR. IN BOLDFACE, THE BEST RESULTS OF EACH COLUMN.

Iter. CBF Control Wave Wave + Noise
1 13.86 11.13 33.70 23.53 40.78 26.40 42.82 29.76
5 5.97 2.46 11.13 2.00 32.27 17.38 30.93 18.73

10 4.56 1.08 6.43 1.47 28.96 16.07 28.87 18.27
15 3.56 0.85 4.00 1.13 27.07 15.87 28.47 18.18
20 3.09 0.78 3.67 1.10 25.64 15.82 28.07 17.36
25 2.66 0.83 3.23 1.00 24.47 15.60 27.47 17.00
30 2.48 0.75 2.67 0.87 24.09 15.87 26.80 17.18
35 2.51 0.80 2.67 1.10 23.67 15.78 26.51 17.11
40 2.33 0.83 2.53 1.10 23.64 15.84 26.36 17.00
45 2.28 0.78 2.37 1.00 23.67 16.22 26.24 16.93
50 2.16 0.75 2.30 1.07 23.21 16.11 26.16 17.20

(a) Cylinder, bell and funnel. (b) Control charts.
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Fig. 2. Graphs of the results for the different data sets. For each one, the maximum and combined errors are plotted.

B.3 Waveform.

The best result in this case is obtained in the iteration � � ,
with an error of

�=� � '�� . The error of an optimal Bayes
classifier on this data set, obtained analytically from the
functions that generate the examples, is approximately� , [12].
This data set is frequently used for testing classifiers. It
has also been tested with boosting (and other methods
of combining classifiers), over the raw data, in different
works. Some of them:

� Applied to C4.5, with 10 iterations,
� � � examples

in total,
� � � � -fold cross validations, obtaining a

best error of
� ��� � � [14].� Again, applied to C4.5, with 10 iterations,

� � � � -
fold cross validations, obtaining a best error of�.� � � �

[15].� The error reported in [16] is
�1� � � � , using Ad-

aBoost.M1 and C4.5. The number of iterations
considered is at most

� ��� , but they stop the pro-
cess if the error of the base classifier is greater than



� � � or equal to � .� MultiBoosting (a combination of boosting and wag-
ging) over C4.5,

� ��� examples in total, with a best
result of � � � ' with

� � iterations and
�.� � �

with
� ���

iterations [17].� It has also been tested in pruning boosting, but the
concrete results for this data set are not available,
only the global results obtained with a set of data
sets and the relative results between different meth-
ods [18].

These results are obtained using base classifiers, trees,
much more complex than out base classifiers (interval
literals).

B.4 Wave + Noise.

Our best result in this case is an error of
� ' � ��� , in the

iteration , � . Again, the error of an optimal Bayes clas-
sifier on this data set is of

� , .
This data set was tested with bagging, boosting and vari-
ants over MC4 (similar to C4.5) [19], using

� ��� � ex-
amples for training and , ��� � for test, and � � iterations.
Their results are in graphs, not in tables, so the exact
value is not available, it appears that their best result is
approximately

� � � � .
V. CONCLUSIONS AND FUTURE WORK

A time series classification system has been presented.
It is based on boosting very simple classifiers. The in-
dividual classifiers are formed only by one literal. The
predicates used are based on the presence of a variable
in a region during an interval.
Experiments on several different data sets show that the
proposed method is highly competitive with previous ap-
proaches. On several data sets, the proposed method
achieves better than all previously reported results we
are aware of. This is especially interesting if we con-
sider that at the present stage:

� The individual classifiers are very simple.� Only literals based on intervals are used.� The method for handling multiclass problems is
also very simple.

These facts suggest that there is enough room for future
improvements.
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